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By Robert W. Leonard and John M. Hedgepeth
SIMMARY

A preliminary theoretical investigation of the panel flutter and
divergence of infinitely long, unstiffened and ring-stiffened thin-walled
circular cylinders is described. ILinearized unsteady potentisel-flow
theory is utilized in conjunction with Donnell's cylinder theory to
obtaln equilibrium equations for panel flutter. Where necessery, & sim-
plified version of Fliigge's cylinder theory is used to obtain greater
gccuracy. By applying Nyquist diagram techniques, anslytical criteria
for the location of stability boundaries are derived. A limited number
of computed results are presented.

INTRODUCTION

Although conslderable effort has been expended in studying the flut-
ter and divergence of thin, flat panels exposed to an airstream (see, for
example, refs. 1 to 9), little is known of the importance of similar aero-
elastic phenomena in the design of thin-walled cylindrical missile bodles
or of other aircreft components where thin, curved panels are used. The
purpose of this report is to describe a preliminary theoretical investiga-
tion of the aeroelastic stability of such configurations. Analytical
criteria for the determinstion of panel flutter and panel-divergence
boundaries for infinitely long, unstiffened and ring-gtiffened thin-walled
circular cylinders are presented along with a limited number of computed
results.
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SYMBOLS

distance between ring stiffeners

amplitude of mth term in expansion for lateral motion of
ring-stiffened cylinder

dumy varlable
speed of sound in air

speed of sound in fluid inside cylinder

speed of sound in cylinder material, gi
v 8
Et5
plate flexural stiffness per unit liength, —2——
12(1 - p®)
Young's modulus
base of natural system of logarithms

outside and inside sir-force functions defined by equations (5)
and (6), respectively

outside. and inside air-force functions for vibrating ring (see
egs. (34) and (35), respectively)

Hankel functlons of first and second kind, respectively,
of order n

thickness of cylinder wall _—

imeginery part

modified Bessel function of first kind of order n

Bessel function of first kind of order n

integer

modified Bessel function of second kind of order n

dimensionless frequency of harmonic vibration, ﬁ% for unstiff-
ened cylinder and %% for ring-stiffened cylinder

\ll
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PosPy

Po,Pq

Re

5]

X1

resonant frequencies of internal air-force function for
unstiffened cylinder (see eq. (22))

function defined by equation (8)
function defined by equation (9)
outward lift force on cylinder wall

emplitude of harmonicglly varying outward 1lift force for
unstiffened cylinder

amplitude of mth term in expansion for outward lift force for
stiffened cylinder

Mach number of flow along vibrating cylinder

Mech number of external or internmsl flow along stationary
cylinder

integer, number of longitudinal half-waves in each bay of
ring-stiffened cylinder

function defined by equation (4k)

integer, number of full waves around circumference of cylinder

forces exerted on cylinder wall by ring stiffeners

emplitudes of harmonically varying reaction forces exerted
by ring stiffeners

redius of cylinder

real part

radial coordinate

time

lateral deflection of cylinder wall, positive outward

amplitude of latersl motion of.cylinder wall for unstiffened
cylinder

longitudinal coordinate for vibrating cylinder

longitudinal coordinste for stationary cylinder
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argument of Bessel functions for supersonic relative flow,

|| JE2 - 1 for unstiffened cylinder and |m|a£2 - 1

for stiffened cylinder
agspect-ratio parameter, Rn/a
function defined after equation (39)
00

Dirac delta function, 8&(x) = 0 for x # O; f 8(x)dx = 1

-0

damping coefficient

argument of Bessel functions for subsonic relative flow,

[#] V1 - €2 for unstiffened cylinder and |m|a J1 -2

for stiffened cylinder
angular circumferential coordinate
Poisson's ratio
wave number of longlitudinal waves in unstiffened cylinder
dimensionless wave number, Ryv
dummy variable
mass density of air

mass demsity of fluld inside cylinder

mass density of cylinder material

midplane stresses in circumferential and longitudinal
directions, positive in tension

dimensionless midplane stresses, UG/E and oyx/E, respectively

parameter defined after equation (8)

parameter defined after equation (39)

frequency of harmonic vibration
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vk operator, (-—- L= E—)a
2. RE 2

V-4 iﬁverse of operstor e

Subscripts:

cr critical value

min minimum value )

max meximm value

Primes are used to indicate differentiation with respect to complete
argument. Subscript notation is used to denote partial differentiation.

METHOD OF APFROACH

The configuration under consideration consists of a thin-walled
unstiffened or ring-stiffened circular cylinder extending to infinity in
the positive and negative x-directions. (See fig. 1.) The cylinder is
filled with a stationary fluld and 1s surrounded by sir flowing in the
posltive x-direction at s Mach number M. The effects of midplane ten-
slle stresses in both the clrcumferential and longitudinal directions
and of s small amount of structural damping are taken into account.

For gimplicity in the analysls, it is assumed that the deformations
of the cylinder walls can in most cases be adequately described by
Donnell's differential equation. (See ref. 10.) It is kept in mindg,
however, that the validity of Donnell's theory is limited to cases in
which there are a large number of circumferential wawes, where this con-
dition is violated, a simplified version of Fliigge's cylinder theory
(see refs. 11 and 12) is employed to improve the accuracy of the results.

The problem to be considered is the determinstion of those combins-
tions of the parameters characterizing the cylinder and its environment
that correspond to the boundary between states of staeble and unstable
motion. For the purposes of this paper, a system is considered stable if
its motion is either damped or purely sinusoidal; only timewise divergent
motion is considered to be unstable. In order to determine the stability
boundary itself, attention can be restricted to simple harmonic motion.
However, such simple-harmonic-motion analyses often yield a multiplicity
of boundaries, and it is necessary to derive equilibrium conditions for
divergent oscillatory motions in order to determine the degree of insta-
bility in regions separated by the various boundaries and, thus, to
identify the primary stebility boundary.
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In line with the foregoing discussion, the method of approach is
first to derive the equilibrium conditions for sinusoldal motion. These
conditions are then extended to apply to divergent motion by mesns of
analytic continuation. A Nyquist diagram technique is used to determine
states of stabilility and stabillty boundaries.

UNSTIFFENED CYLINDER

Derivation of Equations
.

It is assumed hereln that the cylinder wall may deform into any
number of sinusoidal waves around its circumference and into sinusoidal
waves of any wave length and constant amplitude along its length and,’
further, that the motion is simple harmonic in time; spacewlse divergent
motion (motion increasing in amplitude along the cylinder) is specifi-
cally excluded. Thus, the lateral deflection of the cylinder wall may
be written .

w(x,0,t) Re(ﬁe’ivxeiamcos m@

- -%t
Re&?e iv@c v )cos nB] (n=2,3 4, ...) (1)

where W ~is the complex amplitude of the motion, v 4is the real wave nNuhe~_
ber of the longltudinal waves, n is the number of full weves around the
circumference, and o is the frequency of oscillation. This assumed
deflection shepe will be the basie for the determination of the air
forces exerted on the cylinder, the equilibrium condition, and, through
it, the criteria for flutter., Note that n =0 and n =1 have been
specifically excluded from consideration in this panel-flutter analysis
because neither of these two motions involves panel action. The firsty
value n = 0 represents pure dilation or contractlon of the cross sec-~
tion; the second value n =1 merely represents a rigid-body translation
of the cross section.

Air forces.- The alr forces exerted on an infinite ecylinder vibrating
harmonlcally in still air have been reported in the literature. (See, for
example, ref. 13.) Although some of these results can be applied to the
present problem of determining the forces exerted on an oscillating cylin-
der in moving air, i1t is convenlent to derive this result directly. The
unsteady-flow problem can be reduced to a steady-flow problem by means of
a8 moving coordinate system in e manner similar to that of reference 7.
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Accordingly, the perturbation pressures exerted by a steady externsl
or internal flow of Mach number M; on a stationary cylinder deformed in

the shape

~1vx

w = Re (v_re Leos ne) (2)

have been determined in appendix A. The assumed deformation (eq. (1))
has the form of a wave traveling 1n the positive x-direction with veloc-
ity a.\/ v; hence, the flow of Mach number M outside the vibrating cylin-
der is equivalent to a flow of Mach nmumber M -~ w/ vc outside the
stationary cylinder plus a flow of Mach mumber -w/vey; inside the sta-

tionary cylinder. Thus, by making the appropriate substitutions, the
steady~-flow results of eppendix A are readily combined to give, for the
outward air force exerted on a vibrating cylinder,

1(x,8,t) = szRe[iﬁe-iv(x_%t)cos ne] (3)
Where
T = -pc2F(M-k,7,n) + piciEFi(E"-Ik,T:,n) (1)
In equation (4),
_ .2 _Ka(8)
F(¢,b,n) = & (D) (lef < 1)
(1) ' (5)
e B (g i
zHy " (z)
_ .2 L(6)
Fi(gyb,vn) = §2 CI ,(g) (lgl <1)
(6)
- ¢2 Jn(2) (lg] > 1)

2J, 2J,'(z)
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with

ol 1 - iz
o] J2 -1

In equations (5) and (6), Jn is the Bessel function of the first kind,

ng) is the Henkel function of the first or second kind, and I, and K,

are modified Bessel functions of the first and second kind, respectively.
(See, for example, refs. 14 and 15.) The primed quantity in the denomina-
tor of each function 1s the derivative with respect to the entire argument.
Note that a dimensionless frequency k = cn/ ve and a dimensionless wave
number vV = Rv have been introduced in equation (k).

ve
il

N
I

Equilibrium condition.- Donnell's equation for the equilibrium of

thin, cylindrical shells (ref. 10) may be written in the modified form
(see, for example, ref. 16)

- ue - g
D |V + & LA -wB) gty | oy + = wge) + Pghtiyy = 1 (T)
R (Q)Q R
R
where the subscripts x, 0, and t on w indlicate differentistion with
respect to these variesbles. The operators V}+ and V"'l+ are defined by

dx° Re w2

and

Nanadih o S

Substitution of w and 1 from equations (1) and (3) into equation (7)
gives

D (V2 + ﬁ)e , L1220 - B v

2 -
=5 - (2)2 (vz - 22_)2 + h(vzcx + B2 09) - pghe? - Rv21 = 0O
.\ . R

Re
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as the condition for equilibrium of the motion of the eylinder wall in
the presence of the moving air outside and the stationary fluid inside
the cylinder. Written in terms of pertinent nondimensional parameters,
this expression becomes

Ps hf2 pi(ci)2 c Lo 4D _
L=2802 -0+ (L) m &k 7,m) - F(M-k,¥,n) - 1 ﬁTek =0

p \c
(8)
where
Cg h 5 :
0-__<=R T,2(l+ﬁ)+12(1.p2) L s L m2s
S A ST

In the preceding definition, & = o/E, and cg = E/pS is the speed
of sound in the cylinder material. Note that, in equation (8), an addi-
tional term -i —Y— €k has been added in order to include qualitatively

|¥]
the effects of structural dasmping of the Sezawa (viscous) type. The
damping coefficlent € 1s actually related to the parameters of the
systen in a rather complicated fashion but is always positive. A pre-
clse definition of € 1is not necessary because, in the following derive-
tion, it 1s considered to be a vanishingly smsll, positive quantity.

Extension of Equilibrium Equation to Divergent Motion

The flutter equation (eq. (8)) has been derived for sinusoidal motion.
As has been polnted out, an extension to divergent motion (of the form of
eq. (1) with o a complex number having a negative imsginsry part) is
necessary. This requires the analytic continuation of equation (8) into
the complex k-plane. The only terms in equation (8) for which this con-
tinuation is not trivial are the air-force fumctions F and Fy. The

anglytic continugtions of these functions are presented gnd discussed in
appendix B. These functlons are analytic throughout the half-plane corre-
sponding to divergent motion snd spproach the values given by equations (5)
and (6) as k becomes real. That the analytic extension of equation (8)
into the lower half of the e~plane is indeed the equilibrium equation for
divergent motion of the cylinder can be rigorously shown by the application
of Fourier transform analysis.
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Stebility Determination by Use o&f Nyquist Diagrams

In order to determine the stability states of the structure whose
behavior is governed by equation (8), it is expedlent to examine the
varigtion of the function L in the L-plane as Xk traverses, in the
clockwise direction, a curve enclosing that portion of the k-plane
corresponding to divergent motion of the cylinder (the lower half-plane
for positive values of Vv or the upper hslf-plane for negative
values of V). This, of course, is the well-known Nyquist diagrem.

(see, for exsmple, ref.’ 7.) The number of resulting clockwise encircle-
ments of the origin in the L-plane is equal to the number of zeros of L
minus the number of polegs of I enclosed by the curve traversed in the
k-plene. Poles of L do not occur in the unsteble half-plene since the
functions comprising L are analytic everywhere in that region. (It
should be noted that, in all instances, the real k-axis is excluded from
the unsteble half-plane.) Therefore, the Nyquist diagram gives directly
the number of roots of equation (8) for which the frequency of oscillation
has a negative imaginary part; in other words, it gives directly the num-
ber of modes of unstable motion,

With regard to the practical application of the Nyquist diegrams in
the present case, it should be pointed out that actual computation of -
guccessive values of 1L 1is unnecessary; that is, through careful examinsa-
tion of the nature of the functions comprising L, it is possible to con-
struct approximate diagrams correct in all essential features and to see
clearly the conditions under which critical changes (corresponding to
flutter boundaries) occur. Further, it is only necessary to consider
positive values of ¥V Dbecause, 1f Vv 1is replaced by its negative and
k by its conjugate, then L 1is replaced by its conjugate; therefore, no

new flutter boundaries would result from the negative values of 7.

Analysis of Empty Cylinder

Flutter criteria.- If the cylinder is assumed to be empty (pi = 0),
equation (8) reduces to

L

P 2 - -
-F-)ﬂ- %( - 8 ) - F(M—k:v:n) -1 'l_,ll:'—l €k = 0 (9)

Iet the damping coefficlent e be very smell but positive. With this
restriction, the functions comprising I ' (for ¥ > 0) vary with k in
the manner shown in figure 2. Note that the inclusion of the infinitesi-
mal damping is influential only in the range M -~ 1L < k< M 4+ 1 where
Im(-F) = O; elsewhere, Im(-F) is large in comparison with the damping
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term. In the range M - 1 <k <M + 1, the damping mekes Im(L) nega-
tive for positive k and positive for negative k. Hence, for subsonic
flow (fig. 2(a)), the damping insures that TIm(T) = O only at k = 0;

for supersonic flow (fig. 2(b)), it permits Tm(T) =0 onlyat k=M -1
(in the limit as e€—0). The significance of this will be made apparent
by considering the varistion of L as k +traverses the path shown in
figure 3 (with the other parameters held constant).

First, consider subsonic flow. (See fig. 2(a).) Two possible
resulting verietions of 1. are shown in the following Nyquist diagram
(where the full circle at infinity corresponds to the infinite semicircle
in the k-plane):

L-plane

For different values of the parameters, paths similer to I or II may
be traced. For path I, there is no encirclement of the origin and the
cylinder is stable; for path II, oh the other hand, one encirclement
occurs and the cylinder is unstable. §Since, by virtue of the damping
term, Im(T) must pass through zero at k = O, it is apparent that the
boundary between these two conditions is a statie (divergence) boundary
defined throughout the subsonic range by

- p -
Re(T)iao = 0 =2 2 0% - F(M,¥,n) (10)
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Equation (10) may be put into the form

‘(%)5 +al.m=o0 (11)
where
-yl - -
e
and -

12(1 - p2) F(M,v,n)
0 2 2\2
= "9

are positive numbers. Equation (11) has the one real root

1/3 3
%:(3f-ﬁ£+§>/ +(123--/-B—f-+§;)1/ (12)

Thus, for selected values of the other parameters, the thickness ratio
corresponding to the stabllity boundary in the subsonic range msy be com~
puted directly. This is the bounding value of h/R above which the
cylinder is stable. For certain ranges of the paremeters, namely when
the Masch numher is only slightly less than 1 or when the wave length of

- 2
flutter is very large, the approximation F(M,V,n) =~ -M? is permissible.

B =~

When this approximstion.is valid, equation (10) may be solved directly
for M to yleld

5 | V(L - M)
M =~ n-p—s%ﬂz (m <l) (15)

Equation (13) gives the aspproximate bounding value of M below which
the cylinder is stable.

) ]
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For supersonic flow (fig. 2(b)), the possible Nyquist diasgrams
resulting when k +traverses the path of figure 3 appear as shown in the
following sketch:

L-plane

k=M-|

Since, now, the sign of the imsginary part of T always changes at
k=M -1, the criterion for g boundary is seen to be

Re(E)ypp1 = O = Ppé %[(M - 1)2 - 9,2] - F(1,%,n) (1k)

Thus, the instability 1s dynamic, and, since k = V‘g-, the flutter mode

is a traveling wave whose propagaetion velocity % is the velocity of
externsl flow minus the veloclity of sound.

The solution of equation (1%) for h/R can be carried out to yield
a result in the same form as equation (12) wilth appropriate redefinition
of A and B. In the supersonic case, however, the F-function is inde-
pendent of M and is actuslly equal to -1/n; hence, equation (14) may
be solved directly for the Mach mumber of flutter to give the convenient
form .

(15)
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Determination of critical stability boundary.- In computing sta-

bility boundaries, & factor which must be kept in mind is the admissi-
bility of all longitudinal wave lengths and of all integrel values of n
greater than or equal to 2. The critical boundary must necessarily
correspond to the values of Vv ‘and n for which the cylinder is most
prone to flutter. - This critical boundary can be obtalned either by
expressing the bounding value of h/R as a function of the rest of the
parameters (as in eq. (12)) and maximizing this value of h/R with
respect to both Vv and n or by finding the bounding value of M (as
in egs. (13) and (15)) and minimizing with respect to ¥ and n. Of
the two alternatives, the latter i1s more easlly accomplished, analytical
minimization of M being possible. TFor subsonic speeds, however, the
expression for M (eq. (13)) is only approximate and, in some instances,
it becomes necessery to maximize h/R as glven by equation (12). This
is most readily achieved by graphical methods.

Minimization of M can be performed by first minimizing 0° with
respect to ¥ and then minimizing the resulting M with respect to n.
The minimization with respect to ¥ 1is particulerly simple when there
are no imposed midplane stresses é“x = 0g = 0); 1t can be performed with

regspect to the gquantity (? + 22)°. The result is
v

2
Cs\“ h
2\z) R

Omin® = (16)
Jl2(l - p)2

at

(5 + %E)E 2@ - p®) (17)

v

=] [y

2 .
However, the quantity [V + EE) is itself a minimum at ¥ = n; hence,
equation (17) can be satisfied only when

feQ -12) 52 | (18)

R

and, if this condition is violated, G2 can never achieve the value
given by equation (16). The minimum value it can achieve is

2 -
i’ = (58_)2 L L (19)

12(1 - p?) yn?
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If the result given by either equation (16) or equation (19) is sub-
stituted into equation (15), the minimm value of M 1s seen to corre-
spond to the smallest admissible velue of n (that is, n = 2); hence,
for supersonic flow, the critical boundary is given by

_ :
L. 2(%) 7 .1 <1%< 3[12(11- u2))

V2t - 1) o ga
12(1 - p2)
(E > :15 = )

s

Mer

|

r (20)

1+ (fE)a _;Eiggii_.+ SRS I

1
°/ 2@ -uB) 18] ,Ps
o

][~y

Similarly, for subsonic flow, if the approximate equation, equation (13),
is valid, the substitution of equation (16) into equation (13) yields the
criticel boundary

1_1_2
R

V21 - @)

h
Mep = 4 fﬁi(sg)a .___jtll____
Viz(1 - p2)

p \¢c (l - Mcra)

<1 (21)

Numerical example.- For lllustrative purposes, the critical stability

boundary (n = 2) has been computed for an empty, unstressed aluminum cyl-
inder at sea level; additional curves corresponding to n = 3, 4, 5, and
10 have been obtalned for comparison. These results are shown by the
solid curves in figure 4. Portions of the curves in the subsonic range
were obtained by graphicelly maximizing h/R with respect to ¥ as pre-
viocusly mentioned. It is interestihg to examine the wave lengths of the
flutter modes corresponding to these boundsries. In the range where equa-
tion (18) is satisfied, solution of equation (17) yields two different
wave lengths for the same critical thickness ratioc. The larger one of
these two wave lengths is shown in figure 5 for supersonic Mach numbers
in the form of a plot of the aspect ratio of the flutter mode n/i (the
ratio of longitudinal to circumferential wave length) against Mach number
for n=2, 3, 4, and 5. The agpect ratios assoclated with the smaller
wave lengths are not plotted; they are merely the reciprocals of the ones
shown. At the higher Mach numbers, the critical value of h/R becomes
large enough to cause equation (18) to be violated; when this happens,
the two flutter modes coalesce to give a single flutter aspect ratio of
unity as shown by the horizontal cutoff line in figure 5.
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As has been pointed ocut, Donnell's theory is somewhet inaccurste for
small values of n. (See, for example, ref. 12.) In order to obtain some
idea of the mesgnitude of the resulting error, a new Q-function based on a
simplified version of Flligge's cylindrical-shell theory (see, for example,
refs. 11 and 12) has been derived and minimized with respect to ¥; the
details of this derivation are presented in appendix C. - Computstions in
the supersonic range with the new (Fligge) Q-function result in the dashed
curves shown in figures 4 and 5. As in Domnell's theory, the Fllgge
theory yields, for the lower thickness ratios, two values of wave length
for which Q (and, hence, the Mach number) is & minimm. In contrast
with Donnell's theory, however, the two wave lengths are not equally crit-
ical; the larger one always ylelds a lower Mach number. For this reason,
only the higher aspect ratio and its associated stablility boundary are
plotted in the figures. The critical boundary (n = 2) is found to require
thickness ratios approximastely 30 percent higher than those predicted by
Donnell's theory. The two curves for n = 3 still differ by 10 to 15 per-
cent; but, for n = 4, the two theories agree very well. For the sake of
clarity, the stability boundary assoclated with the lower aspect ratio has
not been shown in figure 4. It should be remarked, however, that this '
boundary asgrees very well with the boundary given by Donnell's theory,
even for n = 2. The practical implicetions of the results shown in fig-
ures 4 and 5 are discussed subsequently. :

Malysis of Pluid-Filled Cylinder

When the cylinder is essumed to contain a fluid, the additionsl term
Py ey _
7%(2%) Fi<£i k,v,n) in equation (8) must be included. A typical plot of

this function for real values of k is shown in figure 6. Note that the
force 1s always real and becomes infinite at the resonant frequenciles

2
. Z .
Ky = L1+ 2 =123 .00 (22)

v

where the z3's are the zeros of In(z).

Since F4; 1is always real for real values of Xk, the imasginary part

of L can again be zero only at k = O in the subsonie range and at
k=M-1 in the supersonic range. Stabllity boundaries can consequently
occur only at these frequencies. 1In the subsonic range, the inclusion of
F; has no effect upon the stabllity boundaries since Fy =0 at k = 0.
In the supersonic range, however, the inclusion of F; has a considerable
effect on the stabllity boundaries, not only because of +the additional
force at k =M - 1 but also because of the resonances of Fy.
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The condition for the stablility boundary at supersonic speeds is

Ps b 2 2] 1, PifeiVo e 5
Re(L)k__,M_l =0 = F ﬁ[(M - l) - + -y + -p—(-c—) Fi[q(M-l),V,n] (23)
This equation can be solved for h/R in the same form as equation (12);
that is, '
/3 1/3
b_ (B /BE ) B_ B2 ﬁ)
R <2+ h+27) +(2 \/1;+27 (2)
where now
12(1L - py2) 1 - n° - (M -1)2
A= + Oy + =0,
efo2feh2f T FT ()
;2 (]
and

_ 12(1 - p?) 1 l} 21,‘3_12 < e, J
et Y e

The variation of h/R with Mach mumber for particular values of
the other paremeters 1s shown in the following sketch:

pell=g

1
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!
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0 | g kg l+k, I+ks
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Note that h/R becomes infinite when the Mach number is equal to 1 + kj

(J=1,2,3 ...). (See eq. (22).) This arises from the infinite-
ness of F; and, consequently, of B at these Mach numbers. Note also

that the footpoints of the secondary stability boundaries occur when
B = 0. The numbers within the regions separasted by the solid lines indi-
cate the degree of instability as determined by use of Nyqulst diagrsis.

Since the value of h/R for the empty cylinder is given by equa-
tion (24) with Fy equal to zero, and since Fy is positive for values
of M less than 1 + k7, it can be seen that the fluld inside the cyl~
indexr hias a destabilizing effect.

In order to find the critical stability boundaries, all values of
¥ and n must be considered. Of particular interest in this comnec-
tion is the fact that, for very large values of ¥, the infinities shown

c
in the sketch all spproach a value of M equal to 1 + ?}. (See

eq. (22).)= Thus, the critlical stability boundaries would sppear as
shown in the following sketch:

2|

G
(0] | |+7;

M

For Mach numbers greater than 1 + %}, the cylinder is umstable to an

infinite degree. If the fluid inside the cylinder is sir at the same
temperature as the surrounding air, this limiting Mach number would be
equal to 2. If the cylinder contains a relatlvely incompressible fluid,
however, this Mach number could be very high. In any event, the result
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is somewhat anomslous; it 1s probably caused by the use of linearized
potential-flow theory and, undoubtedly, would not occur for real fluids.

Some Remsrks About the Solution for
an Unstiffened Cylinder

The stabllity criteris for the lnfinitely long, unstiffened cylinder
which were derived 1n the preceding sections were cbtained by including
the effects of structural damping and then taking the limit as the damping
approached zero (e—30). This procedure was followed because different
criteris are obtained when dsmping is not considered (e = 0). This impor-
tant fact is 1llustrated in appendix D where the stabllity criteris for
the empty cylinder with zero dasmplng are discussed. Since structures
always exhibit some damping, it 1s epparent that stability criterla
obtained by taeking the limit as € &approaches zero are more realistic
than those obtained by setting € identically equal to zero. It is
interesting to note that, in thils case, the addition of dampling mekes
the structure more prone to flutter. Thils somewvhat surprising result
may be explained by the fact that a damping force, even though in itself
dissipative, can cause phase changes in such a manner as to allow the
moving outside ailr to feed more energy into the structure; the result 1s
a net energy gain.

With regard to the applicablility of the results for the infinitely
long, unstiffened cylinder to a flutter analysis of cylinders of finite
length, the following remarks are in order.

It is clear that the results for the infinitely long cylinder would
be applicable to a flnite cylinder only if the wave lengths of the flutter
modes were small in comparison with the length of the finite structure.
But, the most critical wave lengths for the Infinitely long, unstiffened
cylinder are very large. (See fig. 5.) It 1s conceiveble that, for a
finite structure, the flutter mode would tend to settle on the smaller of
the two possible longltudinel wave lengths discussed previously. However,
it should be mentioned that, for higher Mach numbers (above M = 5), even
these smaller wave lengths are fairly high; for n = 2, for example, wave
lengths from one to three times the radius would be experienced.

Although the analysie has been carried out for the case of an
unstiffened cylinder, the flutter criteria may also be gpplied to the
case of a cylinder with essentially rigid, longitudinal stiffeners.
These longitudinal stiffeners would have the effect of raising the mini-
mum value of n and, hence, of decreasing the criticael thickness ratio
of flutter. For example, the curve for 20 stringers (n = 10) has been
plotted in figure L, Also, the decrease in clrcumferential wave length
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would cause an attendent decrease in the longitudingl wave length at
flutter and so might possibly make the analysis applicable to practical,
finite cylinders.

The effects of midplane tension stresses (caused, say, by a static-
pressure differentisl across the cylinder wall) have not been investi-
.gated quantitatively; it is evident, however, that these stresses would
increase the critical Mach number since they always inerease § (defined
immediately after eq. (8))

In addition, a qualitative investigation of the behavior of the
Qi-function for Donnell's theory shows that the longitudinal stress oy

has no effect on the critical wave length but that the circumferential
tension oy tends to decrease both the wave lengths corresponding to

minimums of Q. More importantly, the hoop tension mekes the lower of
these two wave lengths criticel because 1t 1ls less influentisl for the
lower wave lengths. Thus, for large circumferential stresses, in view
of the aforementioned agreement between Fligge's and Donnell's theorles
for the lower wave lengths, the preceding analysis, based on Donnell's
theory, might indeed glve useful results for finite cylinders.

This completes the dlscussion of unstiffened cylinders; an analysis
of ring-stiffened cylinders is presented in the next section.

RING-~STIFFENED CYLINDER

The ring-stiffened cylinder consists of the unstiffened cylinder
with added, rigild ring stiffeners which prevent radisl deflection at the
locetions x=%ja (J=0,1,2, .. .). (See fig. 1(b).) The stiff-
eners are assumed not to interfere with the flow of alr outside or of
fluid inside the cylinder. The analysis proceeds along the lines of that
in reference 7.

Derivation of Equsations

If the agssumptions sre made that the cylinder wall msy deform into
any number of sinusoldal waves around 1ts clrcumference and into any shape
periodic over 2 bay lengths in the longitudinal direction, the deformation
may be wrltten, with complete generality, ss

s ICX

= e 1ot
w(x,8,%t) = Re E Bye € cos nd (25)
fi=— -
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provided that the coefficients ap satlsfy the constraining relations

© )

am=0

“I==00

. (26)

o]

> (), =0

= =
’

These conditions correspond to zero deflection at the ring locations.
They may also be written as

(m odd)
> (27)

(2]
By = 0
== w0

(m even)

Only one circumferential term is included in equation (25) because there
is no structural or serodynamic couplihg between the various cosine terms. .
Also, in this case, n =1 1is admitted. The assumption of periodicity
over 2 bay lengths is made because it permits a considerable degree of
generslity without overcomplicating the analysis. It is believed that
the critical flutter mode would be of this type. :

Alr forcegs.- In view of the linearity of the aserodynamic theory,
the air forces exerted on a cylinder executing the motion given by equa-
tion (25) may be determined by separately comsidering each term of the
summation over m and superposing the results. Hence, the aerodynamlc
loading on & cylinder deforming in the shape of the traveling wave

- -8t
W, (x,0,t) = Re[ame 1%16 m)cos n;;l (28)

is sought.
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If equation (28) is compared with equation (1), it becomes apparent
that the air force is given by equations (3) to (6) when the substitu-
tions W = &y and v = mr/a are made. Thus, the total air force may

be written immediately as

2 = ~1HgE
1(x,6,t) = R X Re L8 e e¥eos np (29)
a2 = O
where, for m # O,
Iy = -p'czsz(M-Ihn,mu,n)_ + picizszi('cc_i %,ma,,n) (30)

The functions F and Fy; are given by equations (5) end (6). They are
repeated here for convenience. '

.2 K, (%) . : \
F(E,b,n) = & "L (L) | (el < 1)
r (31)
_ .2 53 (2) _J1 for Bt >0 |
g z8{d) " (z) (J ) {2 for bE < 0 (lel > 1)
_ 2 L)
Fi(§:b,n) = £ C,_IZ'(T | (fe] < 1)
(32)
_ .2 _u(2)
e (lel > 1)
where —

b1 - £2
= |b]\/§2 -1

e
I

2}
|
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In equation (30), k = us/wc and « = Rx/s. The quantity o is the
ratio of one-hglf the circumference to the distance between the rings.
For the speciel case of m = 0, a limiting process glves

10 = -pch(k,CL,Il) + Dic12G1<Ec£ k:@:n) (35)

In equation (33),

(3)¢ .
om) - ¢2 ale]) ={1 for t< 0O N

Jn(a'lgl)

eI (aleD) ()

Gi(§ »q,n) = §2

Equilibrium conditions.- By virtue of the assumed longitudinal
spatial periodicity of the deformation, satisfaction of equilibrium
over any interval of length 2a assures satisfaction of equilibrium
over the whole length of the cylinder. Thus, it is sufficient to write
Donnell's equstion for the segment O £ x< 28 as

b vty o 1 12(1 - p2) ook -h %
+ 34 (n)a Wyrvsex UXWXX.' + R2 Wag} +
R
oghwpy = 1(x,0,1) + Po(8,t)8(x) + P1(6,t)5(x-a) (36)

where Py and P; are the reaction forces exerted on the cylinder wall

by the two ring stiffeners included in the interval and where 8&(x) is
the Dirac delta function.
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Let

Pole,t) = Re (foeiwtcos ne)
(37)

Re (?lei‘“tcos ne)

Pl(e,t)

If Py and P; from equations (37), w from equation (25), and 1 from
equation (29) are substituted into the equilibrium equation, equation (36),
impx

[}

and 1f this eguation ig then multiplied by e and integrated over the

interval, there results

4
2.2 2\  12(1 - 42) (Eﬂ) 2.2 2
o8 4D} (BZ- 4 22 4 B 8 + h{® g 4 B4 -
2 2 2 2 x 9
a R RH B w2y2 | n2
. R 2 RE

a.

2 —_ —
psh“’a'Rz'é'lm ag = Po + (-1)" Py

(m =0, ¥1, ¥2, ¥3, . . .) (58)

Hence, for By # 0,

- m o=
] By + (-1} Py

2ﬂ2c2dR
a

(39)
ﬁm

where, for m # O,

2
[ Py fC
= h 2 2
Pp = -p§ R‘(ﬂma -k ) - %(—61-) m Fi('c% 1i,mz:c.,n) + mfF —I—‘,m,n) + 1 ]——;‘g' ek
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with
= _%é_g& ng(m + I%)2 + 12(1 — IJ'2) - + GX + (-E-)aae
Viz(1 - u2) n (%)2 n2(%= + Izl—m)a .

Note that, as 1n the case of the unstiffened eylinder, a term has been
added to each of the pPBp's 1o approximate the effect of damping (ep > 0).

In the limit as m—30,

2
p Ps [C
o = 2= Bag? - ) - 2L(3Y) Gi(% k:“’n) + G{k,a,0) + Legk

where
Ss b -
= _—L—c n Il2 + —-———12(1 ~ |J,2) 6'9
Viz(z - &) * 2
12(1 - u?) (%)

Finally, sﬁbstituting from equation (39) into the congtraining relations,
equations (27), glves the following conditions for the existence of the
motion defined by equation (25):

B -%) > =0 (40)

(Bo + Fu) i -0 (41)

Inspection of these relations indicetes that simultaneous satisfac-
tion of the equilibrium equation and the restraint conditions can be
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achieved in a nontrivial fashion in several independent ways. One possi-
bility is that

Po=P
(vhich implies that &y = O when m 1s odd) end

[»2]

= o- (42)

L
M=w00 Bm
(m even)
and another is that s
Fp = -Py

_ (yhich implies that &; = O when m is even) and

=0 (43)
m=- Fm
(m odd)

As hes been noted, the derivation herein and the results achleved
exactly parallel. those obtained in reference T for the infinlte, flat
plate. "As pointed ocut therein, still another nontrivial solution 1s
found when the restriction B, # 0 (which characterized the foregoing

results) is removed. Specifically, if two or more Bp's of the same
type (m odd or even) vanish simul taneously, a flutter mode may exist.

Equations (42) snd (43) are conditions for the existence of motion
of constant amplitude; equation (42) corresponds to motion which is
identical in each bay, whereas equation (43) corresponds to motion having
the same amplitude from bay to bay but with alternating direction.

Stabllity Boundsries

As in the case of the unstiffened cylinder, the Nyquist eriterion
can be used to investigate the states of stability of the stiffened
cylinder. In this section are glven the results of a limited investi-
gation which was chiefly concerned with the examinstion of the
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following three-term approximation to equation (h42):

N

S ! (4h)
Bop Bo B

Subsonic flow.- In spplying the Nyquist diagram technique to the

function N, account must be taken of the poles of N at the zeros of
Bo end B o- (There sre no zeros of Bgy.)} The results of such an

application with €—>0 show clearly that, for subsonic Mach numbers,
the only possible instability 1s divergence; further, the three-term
approximation leads to as many as three statlc stabllity boundaries as
shown in the following sketch:

(Bo)k=0= (Bp)k-0" ©
o
(—;.)qu (Sfoble)
0 |

M

In this sketch, a typlcal variation of (h/R)max with M (with other

pertinent parsmeters fixed) 1s shown. The subscript max indicates that
the thickness ratio is maximized with respect to n. The numbers indi-
cate the number of unsteble roots of equation (44) corresponding to each
region. Note that the upper curve corresponds to the condition that two
or more Bn's of the same type vanlsh simultaneously, whereas the others

curves result from the condition (N)y_g = O.

Additional curves would result from the addition of more terms to
N gnd still more curves would result from the consideration of the odd
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solution, equation (43); further, examination of a four-term epproxima-

tion (m = 1, -1, 3, and -3) to equation (43) indicates that, for reason-
able values of a, the most critical boundary for either the even or the
0dd solution must stem from the condition (Bl)k—o (B l)k _o = 0. (For

very small values of a, the distance between rings becomes large and
values of m other than unity may be critical.) The position of this
critical boundary hss been computed for an unstressed aluminum cylinder
at sea level for various representative values of the aspect-ratio
paremeter o. The results are shown in figure 7. These curves corre-
spond to various values of n ranging from 5 upward as illustrated on.
the plot; since n 1s large, Domnell's theory is sufficlently accurate.

Note that the thlickness ratios required for static stability at
subsonic Mach numbers are extremely small; therefore, divergence at
subsonlc speeds is probebly not a critical deslgn factor.

Supersonic flow.- Application of the Nyquist criteria for supersonic

flow is not so readily accomplished without the performance of further
computations. It is clear, however, that divergence boundaries extend
into the supersonic range and that flutter boundaries arise which probably
become more critical then the divergence bounderies.

The definition of these flutter boundaries requires that solutions
be obtained to equations (L42) and (43) or to sulieble approximations,
such as equation (44). This, in turn, requires extensive computations,
especially since the resulting thickness ratios must be meximized wlth
respect to n. This maximization can probably only be achleved laboriously
by meking each computatlon for several values of n.

CONCLUDING REMARKS

A preliminsry theoretical investlgation of the aerocelastic stebility
of infinitely long, thin-walled unstiffened and ring-stiffened clrculsar
cylinders has been conducted by using Donnell's cylinder theory and
linearized unsteady potentisl-flow theory. A limited study of the
resulting stebllity criteria has ylelded the following information.

For unstiffened cylinders with vanishingly small struetural damping,
the only possible instability at subsonic Mach numbers is static diver-
gence; in supersonic flow, however, flutter is found to occur for suffi-
clently thin cylinders in the form of & traveling wave ‘whose propagation
velocity is the velocity of the external flow minus the speed of sound.
For an empty, unstressed aluminum cylinder at sea level, the eritical
boundary is found to correspond to a mode of deformation having only two
waves around the circumference. For this case, the use of the more
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complicated cylinder theory of Fliigge may be necessary. Relatively
large ratios of cylinder-wall thickness to radius are found necessary
for stability, and the wave lengths corresponding to flutter are found
to be very large. With the addition of large, clrcumferential mid-
plane tension stresses, however, the thickness ratios and wave lengths
would be reduced. ’

The addition of an internal fluid has a destabilizing effect on the
unstiffened cylinder. In fact, the anomalous result is found that for
Mach numbers greater than 1 plus the ratic of the speeds of sound in the
flulds 1nside and outside the cylinder, no adjustment of the physical
properties of the cylinder will render it stable.

The presence of even the smallest amount of structursl demping is
found to be an important factor in analyses of infinitely long, unstiff-
ened cylinders. :

For the ring-stiffened cylinder it is found that flutter is not possi-
ble at subsonic Mach numbers and that only very small thickness ratios are
required to prevent divergence. Although both panel flutter and divergence
are possible at supersonic Mach numbers, no numerical results have been
obtained; extensive computations would be required for a complete determi-
nation of the stability boundaries in this range.

Langley Aeronsutical ILaboratory,
Natlonal Advisory Committee for Aeronsutics,
Lengley Field, Va., Jenuary 11, 1956.
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APPENDIX A
'STEADY LINEARIZED FLOW PAST A STATIONARY DEFORMED CYLINDER

In this appendix are derived the perturbastion pressures exerted by
& steady external or internal flow of Mach mumber M; on an infinitely

long thin-walled cylinder with the deformation

W= Re(w—v'e-iw{lcos ne) (A1)

where n 1s a positive integer and the wave number v may be either
positive or negative. The Mach number M; 1s positive for flow in the

positive xj-direction and negative for flow 1n the negastive x;-direction.
(Bee fig. 8.)

In the cylindrical coordinate system (xl,r,e), the linearized
potential-flow equation is :

=z gy + L Boo=0 _ (A2)

=TT e

(l - M12)¢xlxl + ¢rr +

where .¢ is the velocity potential and the subscripts x;, r, and 8

indicate differentiation with respect to these parameters. With the
agssumption that

@(xq,r,0) = Re[f(r)e_%vxlcos_né] J (éj) _
equation (A2) becomes

2
frp + = fp + [xﬁ(Ml2 -1) - -n—Jf =0 (Al)
r =t
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which, for supersonic flow (|M1| > 1), has the solution

f(r) = AHigl) (lvl\/Mlz -1 r) + BHI(F) <|v| M12 -1 r) (a5)

and., for subsonic flow ([Ml‘ < 1), has the solution

£(zr) = AIn(Ivl 1 - M2 r) + BKn<|v[Vl - M r) (A6)

Alr Flow Outside Cylinder
For air flowlng over the outside of the cylinder, the formulastion
of the problem is completed by the specification of the boundary condition

¢p(x1,R,0) = Mlcwxl (A7)

at the cylinder wall end the proper conditions at infinity.

By use of equations (Al) and (A3), equation (A7) becomes
£2(R) = -iMyeww (48)

The resulting pressure perturbation Ap can be calculated from the
linearized Bernoulli's equation

Lo(x,,7,0) = -lec¢xl (A9)

and 1is

Lp(xy,r,0) = lecRe(ifve_ivxlcos nG) (A10)



32 NACA TN 3638

Supersonic flow.- For supersonic flow, the Sommerfeld condition
(that is, that there be no incoming disturbances from infinity) requires
that, for large values of r, the velocity potential ¢ be essentially
a function of Xy - Br for My >0 and s function of Xy + pr for

Mi <O (where g = \/Ml2 - ) Then, from the relation for ¢ (eq. (A3)),
it is apparent that, for large values of r, £(r) must behave like
My

iTﬁITﬁvr

e . Substituting the asymptotic approximations (ref. 14)

\
Lin

@ F[ (2]

oo Eolen] |

nZ

into equation (A5) gives, for large values of r,

ST BAT S
£(z) ~ ) e—l(&%— Ekeilvlﬁr N ei<n+— = -ijv|pr (a12)
xlvipr _

Hence, the Sommerfeld condition requires that B =0 for Mjv >0
end A=0 for Myv < 0. Therefore, equation (A5) becomes

1l for Mqv > 0
- { 1 (a13)

(3
£(r) = AH, (IVI M12-11‘) 2 for Mjv< 0

If, now, A 1is evaluated by use of the boundary ¢ondltion, equa-
tion (A8), and the resulting expression for f is-substituted into

equation (A10), the perturbation pressure on the cylinder wall is
obtalned as
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(J)
80(x1,R,0) = poPRe|RiAl, > Hr(lj)s—“Z)

zH, ' (z)

ﬁé-ivxlcos no

_ {l for Mav >0 (A1)

2 for Mlv <0

where

zZ = Rlv|\/M12 -1

Subsonic flow.- For subsonic flow over the outside of the cylinder,
the potential must remain finite at infinity; hence, equation (A6) reduces

to
£(r) = BKn<|v l\/l - M2 r) (A15)

If B is evaluated by using the boundary condition, equation (A8),
and the resulting expression for £ is then substituted into equa-
tion (A10), the resulting perturbation pressure on the cylinder wall 1s

AP(X:L,R,G) = pcaﬁe Rv%\{la ;ZE%Z) Ee_ivxlcos

where € = Rlvl\’l - Mlz.

Fluid Flow Inside Cylinder

ne (A16)

Tt is assumed that the fluid inside the cylinder may be other than
air and may exist under different conditions from the air outside the
cylinder. Thus, the boundary condition at the cylinder wall is
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£r(R) = ~iMyeyvi (m7)

and Bernoulli's equation may be written as

Lpy(%3,r,6) = psMjcyRe (ifve-ivxlcos nG) (A18)

where the subscript 1 refers to the properties of the fluid inside the
cylinder.

For either supersonic or subsonic flow, the velocity potential must
remein finite throughout the cylinder. If this requirement is to be met
at T = 0, the 'solutions given by equations (A5) and (A6) must reduce,
respectively, to

£(r) = AJg(|v]ym® - 1 x - (A1)
and -
£(r) = AIn{|v[\1 - M2 (420)

With the constant. A determined through the use of the boundary condi-
tion, equation (A17), and the resulting expressions for f substituted
into equation (A18), the perturbation pressure for |Ml| > 1 becomes

Inlz) _
£ps(xq,R,0) = picizRe R'V2M12 " e iXigos ne (A21)
zd, ' (2)
and, for |[My| <1,
2 s Inll) _ _ivx
Api(xl,R,e) = pycyRe RvaMl —_— e lcos né (A22)
£In' ()

These results hold for flow in either direction. Note that, for these
air forces, the pressure is always in phase with the motion. -
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APPENDIX B
ATR FORCES ON A CYLINDER IN DIVERGENT OSCILLATION

The outward 1ift force on & cylinder wall executing the simple
harmonic motion (w real)

w(x,8,t) = Re(v_re'i“‘eiwbcos n9> (B1)

in the presence of moving air outside and a étationary fluid inside the
cylinder has been determined. (See egs. (3) to (6).) The amplitude of
this force 1ls expressed by

-i = -pcaF(M-v—a';-,Rv,n) + piciaFj_(v—(:I,RV, Il) (32)
Tn equation (B2),
K (€) }
F(E:Rv;n) = g2 — : (lgi < l)
tXn' (€)
( L (B3)
3
By (z)
B -l (] el B
an.j (Z) 2 or vE J
and
Fi(g:Rv:n) = 2 ET:P‘E%Z‘)‘ (el < 1}
n
o (BY)
Jn(2)
- 2 2 > 1
7 (2) . (el > 1) J
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where

v
il
o
=
l...l
1
v
o

1
o
<
uvr
[)0]
i
=

z

It is desired to extend these alr-force functions to epply to
divergent motion of the cylinder (w complex with a negative imaginary
part). This extension can be made by using anslytic continuation; in
fact, it can be shown by Fourier transform analysls that the necessary
and sufficient conditions for the extensibility of the air-force func-
tlons to divergent motion are that the air-force functions possess analytic
continuations which have no singularities anywhere in the unstable half-
plene (Im{w) < 0) and reduce smoothly to egustions (B3) and (BY) on the
real axls. Singularities msy possibly exist along the real axis, but
the real axls is specifically excluded from the unstable half-plane.

Consider the function F(&,Rv,n). Exsmination of the manner in
which « appears in F (see eq. (B2)) shows that the unstable half of
the ¢-plane is the upper half-plane if v is positive and the lower
helf-plane 1f v 1is negative. It can be verified that the desired
analytic continuation of F into the proper half-plane is given as
follows:

§2Kn<RIVI 1 - 52)

(B5)
Riv] 1 - §2Kn‘<Rle 1 - 52)

where the desired branch of the multiple-valued functlon F 1s the one
for which the cuts are as shown in the following sketch:

€-plane &-plane

v>0 v<0
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and
(1)
F(V2,Rv,n) = i (?M) (v>0)
RIvESY (R)v))
; (B6)
251(12)(RIVI)
= ) (v <0)
RiviE,  (BRIv])
)

As TIm(¢) approaches zero from the proper direction, the definitions
given by equations (B3) result. Furthermore, no branch points or cubs
of the function F occur in the unstable half of the E&-plane, and, in
addition, Nyquist dlagram techniques can be employed to show that there
are no poles of ¥ in this reglon.

In a similar manner, the analytic continuation of F; can be

§2In<R|v 1\/1 - 52)

RivI\j1 - €2 In'(Rlvl 1~ g2)

expressed in the form

Fi(g;RV:n) = (BT)

No difficulties with branch points oceur for Fs;; the functions Ip
and Ipn' are entire functions and the combinstion In/zIn' 1s an even
function. Therefore, Fi is inherently s single-valued function of &.

The air forces used 1in the analysis of the ring-stiffened cylinder
cen be similerly written for divergent motion. For m 7! 0, it is oniy
necessary to replace v by mt/a in equations (B5) to (B7). For m = O,
it 1s necessary to specify the alr forces separately. Thus, for dilvergent
motion (see egs. (33) to (35)),

19 = -pc2G(k,a,n) + picizGi_(-cE— k,a.,n) (B8)
i
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where

(2)

G(t,a,n) = ey (at) : (B9)
aane)'(OLE.) .

Gy (&,a,n) = E'Jn(,dé) (B10)
oy, (at)

The desired branch of the multiple-valued functlon G is the one for
which the cut extends from the origin to infinity along the positive
imeginary axls and .

e
G(l)nJa’) = '—'—L')— ‘ (B11)

of2)" ()
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APPENDIX C
EQUILTBRIUM OF UNSTIFFENED CYLINDER - FLUGGE'S EQUATION

The simplifying assumptions used in deriving Donnell's differential
equation (eq. (7)) result in a loss of accuracy when the condition
n2 >> 1 1s violated; further, terms which become important when the
longitudinal wave lengths become large (that is, when the behavior of
a cylinder approaches that of & ring) have been omitted.

The more complicated theory proposed by Fliigge (see, for example,
ref. 11) is not characterized by either of these limitations. Fliigge's
equations may be written in the form of a single equation in w, which,

for (h/ZR)2 << 1, reduces {see refs. 11 and 12) to

- u2 -
D Vl*w + —]iv"h' ———12(1 u) Wy + ——2(2 ) Wyx06 + _]);.' Wgeoe +
R (b/R)2 R2 R

2(k - 2
2UR W yneesoer + OWaon00 F _(——1-3?“—) Wyx0060 * ; Wopeeee | p F PghWgt = 1

(c1)
where imposed midplane stresses have not been included. As in Donnell's

equation, equation (Cl) takes no account of inertia forces in the longi-
tudinal and circumferential directions.

Substlitution of w and 1 for the unstiffened cylinder (e
g as. (1)
(3), @nd (4)) into equation (C1l) gives ’

pS h o o pi Ci c - _ '{,
;'I;(k - 0% + == Fi(q k,v,n) - F(M-k,V,n) - 1 51 i (c2)

where the term -1 —r— €k has been added to include qualitatively the
v
effects of Sezawa (viscous) dasmping and where, now,
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e g - oo o) ]

(c3)

Equation (C2) is precisely equetion (8); hence, the flutter boundary in
the supersonic range for the empty, unstressed cylinder is still defined

by

|

(k)

B
o|®

] fa

but with O glven by the more complicated function, equation (C3). As
before, the critical boundary corresponds to the minimum velue of M .
as v end n are varied. Setting 002/0V = O ylelds

12(1 - p2)|-6
2
(%)

12(1 - !J~2) ;ll- -

7+ 3n27/'8 + |odt + 2(3 - 2u)n? -

n2|ont - 2(5 - 2u)n2 + 4(2 - p) -

ZnH(n2 - 1)272 - B2 - 1)2= 0 (c5)

Careful examination of equetion (C5) indicates that, for small values of
n/R, there are two minimums of Q2 with an intervening maximum. Computa-
tions have been made for an aluminum cylinder at sea level by letting
n=2, 3 and %; both the minimums of Q2 were checked and, through equa-
tion (Clk), the boundsries corresponding to the lower of these were deter- c
mined. These results are shown by the dashed curves in figure L4; in
addition, the corresponding wave lengths are given in figure 5.
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APPENDIX D
TMPORTANCE OF DAMPING IN UNSTIFFENED CYLINDER

It is of interest to examine some of the results of an analysis of
the empty, unstiffened cylinder which takes no account of damping (as
opposed to the analysis in the body of this paper which treats a cylinder
in the limit as demping approaches zero). The equilibrium condition,
equation (9), reduces to

il B
]

Ps hf,2 .2 =
Tﬁ(k - Q ) - F(M-k,%,n) = 0 (p1)

and its constituent functions vary as in figure 2 except that now
(L) = 0 +throughout the range M - 1< k< M + 1.

A typical Nyquist disgram (resulting when k +traverses the path

of fig. 3) 1s shown in the following sketch which corresponds to the
particular conditions v>0, O<M - 1< a<M, Re(f)k___M_l > 0,

and Re (Bf/ak)k:M_l < 0;

L-plane

k=—c

wo—"

Stable path ﬁ
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(The infinitesimal, counterclockwise semicircles correspond to infinitesi-
mal, counterclockwise semicircles traversed by k to exclude zeros of L
on the real axls from the lower helf-plene.)} These particular conditions
are illustreated because they show clearly the possible existence of &
stable condition with Re(L)y_y_1 > 0, & circumstance found impossible

with demping present. The reason for the difference, of course, is that,
for k > 0, the demping term is a negative imaginery quantity and even
the smallest amount of damping shif'ts all the portion,of the disgram
corresponding to the range M - 1< k<M + 1 below the imaginary

axis.

Note that, for the case of zero demping, satisfaction of equilibrium
(i'=-0) with k real 1s not alweys sufficlent for definition of the
boundary; for the conditions in the cilted example, the roots of L =0
do not pass directly from the upper into the lower half of the k-plane as
the other perasmeters are variled, but linger ewhile on the real axis.
Instabllity occurs when a root leaves the real axlis and enters the lower
half of the k-plane. For the cited example, this definition corresponds
to the simultaneocus solution of the eguations

=0

_ (p2)
AL _,

ok

in the range M - 1 <k <M.

Another significant difference in the two analyses is that, when
damping is lgnored, the instability in the subsonilc region is low-frequency
flutter and no purely static instability of the cylinder is possible. Sim-
ilar differences would be found for the fluid-filled cylinder if the
damping were ignored. The fact that the two assumptions, e€—>0 and
€ = 0, produce such discontlnucusly different results testifies to the
importance of the presence of damping in the unstiffened cylinder.
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(a) Unstiffened cylinder.

t x

(b) Ring-stiffened cylinder.

Figure 1.- Infinitely long, thin-walled circulsr cylinder with air flow
outside and stationary fluid inside.
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Re(-F)

(e.) Subsonic flow (M < 1).

s

(b) Supersonic flow (M > 1).

Figure 2.- Typical varistions with k) c;f functions comprising T. (See
eg. (9).
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k-plane

Figure 3.- Path enclosing lower half of k-plane (corresponding to unstable
motion for ¥ > 0).
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Figure 4.- Stability boundaries for empty, infinitely long, unstiffened
aluminunt cylinder at sea level with no applied membrane stress.
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Aspect
ratio, 5
v a
v
{02 o
5 -
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o l 2 3 4 5
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Figure 5.- Panel aspect ratio of critical flutter mode for empty, infi-
nitely long, unstlffened aluminum cylinder at sea level with no
applied membrane stress.
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Figure 6.~ Typical variation of Fy with k.
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Figure T.=- Critical divergence boundaries for infinitely long, unstressed,
ring-stiffened aluminum cylinder at sea level.
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Figure 8.~ Cylindrical coordinastes for analysie of flow ‘past stationary,
deformed cylinder.
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